
16 IEEE Network • July/August 20160890-8044/16/$25.00 © 2016 IEEE

Cloud storage services facilitate the sync of local fold-
ers with servers in the cloud. In recent years they

have gained tremendous popularity and accounted for a large
amount of Internet traffic [1, 2]. This high public interest push-
es various providers to enter the cloud storage market. Services
like Dropbox, Google Drive, OneDrive, and Box are becoming
pervasive in people’s routines. The first one, active since 2007,
currently accounts for over 300 million users and has reached
US$10 billion market capitalization [3]. Apart from a conve-
nient way to store, synchronize, and share personal files, cloud
storage services also provide powerful application program-
ming interfaces (APIs) that enable third-party applications to
offload the burden of data storage and management to the
server. By aggregating users’ files or application data in the
same place, cloud storage services are becoming the “data
entrance” for personal users.

Meanwhile, the increasing number of wireless devices poses
the demand of accessing, operating, and sharing user data
from anywhere, on any device, at any time, and with any con-
nectivity. To this end, cloud storage services are extended and
deployed on mobile devices. File changes made on local files
can be automatically uploaded to the cloud through wireless
communications, and then be transferred to other devices.
However, synchronizing and sharing data via wireless networks
are more challenging than that in wired networks. Wireless
networks often suffer higher delay and packet loss. Connec-
tions may also be interrupted because of the mobility and
varied channel quality. Therefore, ensuring good sync per-
formance while keeping data consistency is quite critical but
challenging for mobile cloud storage services.

Previous works on cloud storage services have only focused
on the server-side storage design [4] or the measurement in
wired networks [1, 5–7]. Katsuya Suto et al. [8] introduced
more general and effective principles for parallel data process-
ing. However, there is scant research on the design and archi-

tectural choice of mobile cloud storage services. It is important
for both service providers and research communities to under-
stand the internal sync principle in order to provide optimiza-
tion. To fill this gap, in this article we present the first study to
shed light on the architecture, protocol, and sync performance
of mobile cloud storage services. We provide a technical over-
view including the introduction of the system architecture,
sync protocols, and key capabilities that can be implemented
to optimize sync efficiency, which indicates how fast changes
can be completely synchronized between the local file system
and the cloud.

Further on, we conduct an experimental study for the four
most popular commercial mobile cloud storage services. As
previous work [5] only measures the sync time and the sync
traffic in wired networks, we take the benchmark one step
further. Our measurement focuses on the mobile platform,
and we further consider the impact of various network condi-
tions, the overhead of exception recovery that may be caused
by intermittent connectivity, and the energy cost. Our results
show that the concrete capability implementation has a strong
impact on the sync performance, and some services cannot
even work in high loss environments. In summary, all test-
ed services suffer from performance limitations, and there
remains room for improvement. As optimizing service quality
for mobile cloud storage is significant and challenging, we also
highlight the key challenges and give hints for future improve-
ment. To the best of the authors’ knowledge, this is the first
article that provides a wide overview and experimental evalua-
tion for mobile cloud storage services.

Mobile Cloud Storage: Architecture and
Protocol
Architecture
Three major components can be identified in mobile cloud
storage services: the client, the control server, and the data stor-
age server. Figure 1 depicts these three components and their

Abstract
Mobile cloud storage services provide users a convenient and reliable way to store
and share data on mobile devices. Despite increasing popularity, little work has
focused on their architecture and internal sync protocol. In this article, we present a
thorough architecture of mobile cloud storage services including sync protocols and
key capabilities for speeding up transmission. Furthermore, we conduct a series of
experiments to evaluate the sync performance of four popular commercial mobile
cloud storage services. Our results show that the concrete deployment of capabili-
ties has a strong impact on the performance of mobile cloud storage services. There
is no clear winner, with all services suffering from some limitations or having poten-
tial for improvement. We pose issues and challenges to advance the topic area,
and hope to pave a way for the forthcoming.

A First Look at Mobile Cloud
Storage Services: Architecture,

Experimentation, and Challenges
Yong Cui, Zeqi Lai, and Ningwei Dai

The authors are with Tsinghua University.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2016 17

interaction in a typical wireless network. All components are
integrated and exchange data through the sync protocol. The
client exchanges control information (including metadata and
account information) as well as content with control and data
storage servers, respectively, over wireless communications. To
speed up transmission, several capabilities can be implement-
ed in the sync protocol for optimization. Here we first describe
the detailed functions of each component.

Client: Internally, the client consists of a variety of func-
tional modules. Before a sync, files are often spilt into several
chunks in fixed or variable size [9] by the Chunker . Each
chunk is treated as an independent object and identified by
a hash. The Indexer generates metadata, which include
the hash value, version, and timestamp for each chunk. The
Notifier connects to the control server and is used for polling
changes performed elsewhere. Local file contents are stored
in a Cache, and user modifications are first performed in the
Cache. When connectivity is available, changes in the Cache
are automatically updated to the cloud.

Control Server: The control server authenticates users,
manages metadata, and notifies changes to clients. The file sys-
tem in the control server has a different abstraction, which is
presented by a big metadata database. In this database, no file
contents are stored, only metadata including chunk lists, which
are the sets of hashes uniquely identifying file contents.

Data Storage Server: This component maintains a key-value
store of hashes to encrypted chunks. Generally, all files are
treated as binary objects, which are partitioned into chunks.
These chunks are stored in the data storage server with no
knowledge of users and files, and how they fit together. Such
a chunking mechanism provides scalability for storage and
can also be leveraged to improve transmission efficiency, as
discussed later. Data storage servers can be distributed in dif-
ferent geographical locations, meaning that the chunks com-
bining a file may be stored in different storage nodes.

Sync Protocol
Typically, sync protocols are built on HTTP(S). We identify
three main flows according to their function.

Notification Flow: The Notifier in the client continuously
opens a persistent HTTP(S) connection to the control serv-
er, waiting for notification of changes performed elsewhere.
Delayed responses are used to implement a push mechanism:
notifications are pushed to the client once changes from other
devices are updated to the cloud.

Control Information Flow: This flow is designed for the
authentication and exchanging metadata between the client
and the control server. Typically, a sync process starts with
exchanging metadata with the control server, followed by
a batch of either store or retrieve operations through stor-
age servers. When data chunks are successfully transferred
through data storage flows, the client updates metadata with
the control server again to conclude the transmission.

Data Storage Flow: During this process, file contents are

transmitted between the client and the data storage server.
Generally, files are split into several chunks and transferred
sequentially in storage flows. In certain circumstances when
updating multiple files, the client may open several concurrent
connections for transmission, and in this way chunks would be
distributedly stored in different storage servers.

A typical sync process contains three key steps:
• Sync preparation, updating metadata with the control server
• Data sync, in which the client stores data to or retrieves data

from the data storage server
• Sync conclusion, in which the client sends metadata to the

control server again to conclude transmission
Now we illustrate the protocol by introducing a typical sync
scenario. Assume that user A in Fig. 1 is outside of the office
carrying her mobile device and wants to synchronize with
workmates B, C, and D in the office. Once files in the local
Cache are changed, the client follows the typical three steps
to upload changes to the cloud. Metadata are first updated
to the control server (step 1), and then the mobile device of
A uploads chunks to the storage server (step 2). After trans-
mission, the client communicates with the control server again
to conclude the uploading process (step 3). Next, the con-
trol server will notify collaborators’ devices in a WLAN via
the notification flow (step 4). Devices of B, C, and D down-
load chunks following the similar three processes to fetch and
merge changes (step 5–7).

Capabilities for Performance Optimization
Wireless networks often suffer from limited bandwidth, higher
packet loss, and intermittent connectivity, especially in poor
signal strength environments. Moreover, mobile devices also
have limited computation and storage resources. To improve
sync efficiency and reduce traffic overhead in mobile networks,
several key capabilities can be implemented in mobile cloud
storage services.

Chunking: Chunking is the general and basic design con-
sideration for data storage. Chunking helps to reduce the sync
overhead when resuming the transmission from an interrup-
tion, which usually happens in an unstable wireless environ-
ment. During the sync process, the client creates a session
with the storage server, and sequentially sends chunks tagged
with the offset and length. The next chunk will be sent until
receiving an application layer acknowledgment for the previ-
ous chunk. By this approach, the sender avoids transferring
the acknowledged chunks if the sync session is interrupted.

Bundling: When a batch of small files needs to be trans-
ferred, a natural way is to treat each small file as a single
chunk and submit them continuously. However, frequent
acknowledgment for small chunks will seriously harm sync effi-
ciency, especially in high delay networks. Moreover, too many
HTTPS connections will also increase handshake overhead.
It is beneficial to bundle small files in a single connection to
reduce the application layer acknowledgment and the hand-
shake overhead.

Figure 1. Sync architecture of mobile cloud storage.

Client
Chunker
Indexer
Notifier

Cache

1. Update metadata

3. Conclude uploading

2. Upload new chunks

4. Notification5. Update metadata

6. Download chunks

A B
C

D

Data storage
server

Control server

Upload process Download process

7. Conclude downloading

Client
Chunker
Indexer
Notifier

Cache

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 201618

Client-Side Deduplication: The basic idea of client-side
deduplication is to identify the contents that already exist in
the cloud before a sync to avoid redundant transmission, and
reduce both the sync traffic and the completion time [10]. In
practice, such a process can be conducted in the metadata
information flow. The control server can identify redundant
chunks by checking existing hashes in the database.

Delta Encoding: Ideally, the client only needs to update the
modified data to the cloud. To this end, delta encoding cal-
culates file differences between two versions, allowing to only
synchronize the delta content. Such technique provides signif-
icant benefit in bandwidth limited environments by reducing
the sync traffic of frequent modifications. However for some
encoded file types (e.g. jpeg or zip), delta-encoding should be
carefully used since it will not provide benefit but only involve
additional computation overhead.

Previous studies [1, 5] showed that cloud storage services
can implement these capabilities in their desktop applications.
In this article, we focus on cloud storage services in mobile
platforms and check the capability implementation on mobile
storage applications.

APIs for Connecting Everything in the Cloud
Modern mobile cloud storage services provide APIs that
extend the access to the content management features in client
software for use in third-party applications. In practical mobile
operating systems (e.g., Android or iOS), these APIs take care
of synchronizing data with cloud storage services through a
familiar way like operations on the local file system. Behind
the scenes, APIs synchronize local file changes to the cloud
and automatically notify mobile applications when changes are
made on other devices. Specifically, advanced functionalities
like search, revision, or restoration of files can be implemented
in APIs. The open APIs often implement the key capabilities
like chunking or deduplication described above to optimize
sync. The released client applications of mobile cloud storage
services are also built on these content management APIs.

Experimental Evaluation
In this section we report the experimental results of evaluating
the four most popular commercial mobile cloud storage ser-
vices: Dropbox, Google Drive, OneDrive, and Box. Our goal
is two-fold: to check the capability implementation and bench-
mark the sync performance, including the protocol overhead,
sync completion time, and energy cost.

Testbed Setup
We deploy a testbed consisting of a smartphone (Galaxy
Nexus, with Android 4.3.1) connecting to a controlled WiFi
access point (AP). We use tc, a Linux traffic control tool, at
the AP to tune the round-trip time (RTT) and packet loss of
the wireless environment. We use tcpdump to collect the pack-
et-level trace of a sync process, and extract the total sync time
and traffic size. To measure the energy cost, we use Monsoon
Power Monitor [11] to gain the power in each step of a
sync process. Each test is performed 10 times to calculate the
average result.

Checking the Capability Implementation
To check the capability in mobile cloud storage services, we
design a specific test for each capability in the Android plat-
form to observe if the given one is implemented.

Chunking: We determine whether files are transferred as
single objects or split into chunks, each delimited by a pause,
by monitoring the throughput during the upload process of
files differing in size. We find that only Box does not perform
chunking when uploading files. Dropbox uses 4 MB chunks,

and OneDrive uses 1 MB chunks, while Google Drive uses
260 kB chunks. Since chunks are uploaded sequentially, using
larger chunks reduces the acknowledgment overhead, but may
involve more retransmission traffic when the sync process is
interrupted. Chunking would be advantageous since it simpli-
fies upload recovery in case of failures, especially in slow or
intermittent networks.

Bundling: We identify bundling by analyzing whether a
batch of small chunks is bundled and cumulatively acknowl-
edged. Our results show that in the mobile platform, none
of these services implement the bundling capability, with all
chunks acknowledged sequentially.

Client-Side Deduplication: To check whether client-side
data deduplication is implemented, we design two tests:
uploading a file and its replica with a different name, and
deleting a file in the server and uploading a copy of it. Our
results show that only Dropbox implements data deduplica-
tion. All the other services will upload the same data even if
it is available at the storage server. Interestingly, Dropbox can
identify copies of files even after they are deleted.

Delta Encoding: By adding/deleting/updating a small
amount of random data at the beginning, end, or random posi-
tion of a file, we examine whether delta encoding is imple-
mented. Our results show that in the mobile platform, none of
the tested services implement delta encoding capability.

Sync Traffic Overhead
The traffic overhead is one of the most crucial design con-
siderations for mobile cloud storage services. If not designed
properly, the amount of data sync traffic can potentially cause
financial pains to both providers and users. Now we evaluate
the sync traffic overhead of the four services when the client
starts, is idle, and synchronizes changes, as well as when the
sync process is interrupted.

Startup and Idle Overhead: We measure the sync traffic in
20 min from startup without content updating to obtain the
startup and idle overhead. Figure 2 reports the cumulative
bytes exchanged. All four services have a burst when the client
starts authentication and checking whether local files are up
to date. Specifically, Dropbox has the largest startup traffic,
which is 421.47 kB in 1.53 min. The background traffic keeps
increasing because the clients continuously poll the server for
new changes.

Sync Overhead: We then measure the total traffic size when
uploading several benchmark sets differing in file number
and size, as shown in Fig. 3. We find that in most cases the
uploading traffic is close to the original file size. Specifically,
we find that Google Drive has the largest uploading traffic,
OneDrive and Dropbox come next, while Box has the smallest
uploading traffic. This is because Google Drive implements
the most aggressive chunking strategy (260 kB chunks) and
hence involves much more acknowledgment overhead.

Figure 2. Background traffic in 20 minutes from startup.

0
0

100

4 8 12 16 20

200

300

400

500

600

700

Tr
af

fic
 (

kB
)

Time (min)

Dropbox
Google Drive
OneDrive
Box

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2016 19

Furthermore, we measure the traffic overhead for updat-
ing local modifications to the server. Specifically, we use
an editing tool to modify 10 bytes of a 5 MB word file, and
then the client updates the modified content to the cloud.
We observe that for all the services, the updating traffic is
5 MB even though we only change 10 bytes of data. Note
that the sync overhead of Dropbox is much higher than the
measurement results in [12] conducted in a desktop envi-
ronment. The root cause is that in the mobile platform, all
these services use the full-file sync mechanism instead of
the incremental sync.

Overhead of Exception Recovery: Finally, we examine
the total overhead when the sync process is interrupted. We
upload a set of files with different sizes, and close the TCP
connection when half of the file has been uploaded. After
the restart of the program, the client will create new connec-
tions to finish the sync. The results of total traffic overhead
are shown in Fig. 4. We find that Google Drive obtains the
smallest total overhead. The aggressive chunking strategy

used by Google Drive helps to reduce the overhead of excep-
tion recovery by avoiding the retransmission of chunks that
are not received. Box generates the largest traffic because it
retransmits the whole file when the connection is unexpect-
edly closed. The traffic of the four services when uploading
10 1 MB files are similar and close to the total file size (10
MB) because all services only send the unacknowledged files
after the restart.

Sync Completion Time
Wireless or mobile environments often suffer from larger RTT
and packet loss than wired networks. Now we evaluate the
impact of various network conditions on the sync completion
time. We measure the sync completion time as the duration
from the first to the last packet with payload during the sync
process, ignoring TCP tear-down delays.

The sync time results of uploading a set of files with

Figure 3. Sync overhead of uploading several benchmark sets.

10
100 k 1 M 10 MB 10 * 100 kB

100

1,000

10,000
U

pl
oa

d
tr

af
fi

c
si

ze
 (

kB
)

Benchmark set

Dropbox
Google Drive
OneDrive
Box

Figure 4. Total traffic overhead when the sync process is
interrupted.

0

5

10

15

20

Benchmark set

Tr
af

fic
si

ze
 (

M
B)

Dropbox
Google Drive
OneDrive
Box

10 1 MB 1 10 MB

Figure 5. Sync complete time with various RTT settings: a) Dropbox; b) Google Drive; c) OneDrive; d) Box.

0

30

200 400 600

60

90

120

150

U
pl

oa
d

sy
nc

hr
on

iz
at

io
n

ti
m

e
(s

)

RTT (ms)

 4 MB
 10 400 kB

200 400 600

(a)

200 400 600
RTT (ms)

(c)

200 400 600
RTT (ms)

(d)

0

30

60

90

120

150

U
pl

oa
d

sy
nc

hr
on

iz
at

io
n

ti
m

e
(s

)

RTT (ms)

 4 MB
 10 400 kB

(b)

0

30

60

90

120

150

U
pl

oa
d

sy
nc

hr
on

iz
at

io
n

ti
m

e
(s

)

 4 MB
 10 400 kB

0

30

60

90

120

150

U
pl

oa
d

sy
nc

hr
on

iz
at

io
n

ti
m

e
(s

)

 4 MB
 10 400 kB

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 201620

different RTT using the four services are illustrated in
Fig. 5. We only plot the results of 4 MB and 10 400
kB files due to the page limit, and we consider 4 MB to
be a reasonable size on mobile devices because of their
limited storage. Data sets in different volumes have also
been tested and show similar results. In each case, Box is
the fastest because without chunking, it has the smallest
acknowledgment overhead and transfers chunks in a single
TCP connection. Google Drive spends more time than
others because of using the aggressive chunking strategy
and the usage of separated TCP/SSL connections per file.
Furthermore, we find that the completion time of multi-
ple files is much longer than that of single files. This is
because without bundling, a lot of small files involve more
acknowledgment overhead. For all services, although it is
common to see the sync be slower as the RTT rises, inter-
estingly we find that for multiple small files’ sync, the com-
pletion time increases faster. This is because many small
files incur more acknowledgment overhead. Considering
that the sequential acknowledgment scheme forces clients
to wait one RTT between two chunks, the completion time
is extended in slow networks because application-layer
acknowledgments are transiting the network.

Results in various packet loss are similar and are omitted
due to the page limit. Interestingly, we observe that when
the packet loss reaches 10 percent, Google Drive can never
synchronize data successfully! The client will get into a loop
retransmitting the same chunk. We observe that Google Drive
terminates the current connection and retransmits the chunks
that are not received in high loss networks to ensure data
consistency. Collectively, both the RTT and packet loss have
strong impact on the sync completion time.

Energy Cost
We conduct experiments to evaluate the energy cost when
synchronizing files differing in size. We break down the total
energy consumption into the three sync steps described earlier,
and the results are shown in Fig. 6. Box has the minimal ener-
gy cost in the Sync Preparation state because it does not split
data into chunks before transmission. We observe that the
energy cost of synchronizing a 100 kB file is similar to that of
a 1 MB file. The reason is that because of the TCP slow start,
the sync completion time of a 100 KB file is close to that of a
1 MB file. Specifically, we observe the energy consumption of
Google Drive when synchronizing a 10 MB file is the highest.
The average CPU usage of the four services when upload-
ing 10MB files are 10.47 percent (Dropbox), 64.53 percent
(Google Drive), 13.38 percent (OneDrive), and 13.80 percent
(Box). Thus, the reason for such high energy cost may be that
Google Drive uses small chunk size and continuously hashes
the chunks during the entire sync process.

Challenges
According to our evaluation results of four mobile cloud ser-
vices, we find that the concrete capability implementation has a
strong impact on the sync performance in various network envi-
ronments. Now we conclude and highlight three key challenges
of future improvement for mobile cloud storage services.

The Conflict between Bandwidth Saving and
Distributed Storage
Network bandwidth efficiency is the most significant but
extremely challenging issue for sync in cellular networks. Ide-
ally, only the modified parts of the file need to be synchronized
to the cloud. However, our measurement results indicate that

Figure 6. Breaking down energy consumption for four services during the sync process: a) Dropbox; b) Google Drive; c) OneDrive;
d) Box.

100 kB 1 MB 10 MB 100 kB 1 MB 10 MB

100 kB 1 MB 10 MB100 kB 1 MB 10 MB

1

10

100
En

er
gy

co
st

 (
J)

Sync preparation

Data sync

Sync conclusion

(a)

1

10

100

En
er

gy
co

st
 (

J)

Sync preparation

Data sync

Sync conclusion

(b)

1

10

100

En
er

gy
co

st
 (

J)

Sync preparation

Data sync

Sync conclusion

(c)

1

10

100

En
er

gy
co

st
 (

J)

Sync preparation

Data sync

Sync conclusion

(d)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2016 21

most mobile cloud storage services only use the simple full-file
sync mechanism, wasting a large amount of traffic when syn-
chronizing small changes. Implementing the incremental sync
mechanism is very challenging in practice for two key reasons.
On one hand, most of today’s cloud storage services (e.g.,
OneDrive and Dropbox) are built on top of RESTful infra-
structure, which only supports data access operations at the
full-file (or full-chunk) level. On the other hand, the delta-en-
coding algorithm is the key technique for the incremental sync
mechanism. However, most delta-encoding algorithms [13, 14]
work at a file granularity, which means that the utility running
on two ends must have access to the entire file. But for mobile
cloud storage services, files are split into chunks and stored
distributedly. Straightforward adaptation of delta-encoding
requires piecing together all chunks and reconstructing the
whole file, which would waste massive intra-cluster bandwidth.
Since file modifications frequently happen, for future improve-
ment it is worthwhile to address the challenges by proposing
an improved delta encoding algorithm to reduce sync traffic
overhead.

The Trade-off between Real-Time Consistency and
Protocol Overhead
Real-time consistency requires that data among multiple
devices should be correctly synchronized as soon as possible
[15]. To this end, some services like Dropbox open a persistent
TCP connection for polling and receiving notifications. How-
ever, such a polling mechanism causes a large amount of traf-
fic and energy consumption since polling involves additional
message exchanging, requesting the wireless network interface
to be woken up and kept in a high power state. For mobile
cloud storage services, the notification flow should be carefully
designed to avoid too much traffic and energy waste.

The Balance between Sync Efficiency and
Constrained Energy Resource in Mobile Devices
Sync efficiency, defined as how fast the local changes can be
updated to the server, is an important metric for mobile cloud
storage services. Generally, deduplication, delta-encoding, and
compression are the key techniques for efficiency improve-
ment. However, all these techniques may involve additional
computational overhead and energy cost, as shown above. The
emergence of more energy-efficient sync techniques is expect-
ed to improve mobile cloud storage services.

Conclusion and Outlook
Since cloud storage is becoming a more predominant way to
store, synchronize, and share user data in mobile networks,
understanding the design and performance of cloud storage
services is significant for both service providers and research
communities. In this article, we present a thorough overview
of the mobile cloud storage services by introducing their archi-
tecture, sync protocols, and key capabilities, followed by an
experimental study that evaluates the four most popular com-
mercial services. Our experiment results show that the capabil-
ities have a strong impact on the performance of mobile cloud
storage services. All tested services suffer performance limita-
tions, and there remains room for improvement.

Finally, we conclude and highlight three key challenges for
future improvement of mobile cloud storage services. We hope
our experiments and analysis can give insight for both service
providers and research communities. To the best of our knowl-
edge we are the first to study the design and performance of
mobile cloud storage services. As future work, we intend to do
research on improving network level sync efficiency for mobile
cloud storage services.

Acknowledgment
This work is supported by the National Natural Science Foun-
dation of China (no. 61422206, 61120106008) and National
863 project (no. 2015AA015701).

References
[1] I. Drago et al., “Inside Dropbox: Understanding Personal Cloud Storage

Services,” Proc. ACM IMC, 2012, pp. 481–94.
[2] Z. Li et al., “Towards Network-Level Efficiency for Cloud Storage Services,”

Proc. ACM IMC, 2014, pp. 115–28.
[3] Dropbox, http://www.dropbox.com.
[4] M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem Backup to

the Cloud,” TOS, vol. 5, no. 4, 2009, p. 14.
[5] I. Drago et al., “Benchmarking Personal Cloud Storage,” Proc. ACM IMC,

2013, pp. 205–12.
[6] Y. Zhang et al., “Viewbox: Integrating Local File Systems with Cloud Stor-

age Services,” Proc. FAST, 2014, pp. 119–32.
[7] A. Li et al., “Cloudcmp: Comparing Public Cloud Providers,” Proc. 10th

ACM SIGCOMM Conf. Internet Measurement, 2010, pp. 1–14.
[8] K. Suto et al., “Toward Integrating Overlay and Physical Networks for

Robust Parallel Processing Architecture,” IEEE Network, vol. 28, no. 4, July
2014, pp. 40–45.

[9] A. Muthitacharoen, B. Chen, and D. Mazieres, “A Low-Bandwidth Network
File System,” Proc. ACM SIGOPS, vol. 35, no. 5, 2001, pp. 174–87.

[10] B. Agarwal et al., “Endre: An End-System Redundancy Elimination Service
for Enterprises,” Proc. NSDI, 2010, pp. 419–32.

[11] Mosoon, https://www.msoon.com/LabEquipment/PowerMonitor.
[12] Z. Li et al., “Efficient Batched Synchronization in Dropbox-Like Cloud Stor-

age Services,” Middleware 2013, Springer, 2013, pp. 307–27.
[13] A. Tridgell et al., “The Rsync Algorithm,” 1996.
[14] A. Chitnis et al., “Primary Neurogenesis in Xenopus Embryos Regulated

by a Homologue of the Drosophila Neurogenic Gene Delta,” Nature, vol.
375, no. 6534, 1995, pp. 761–66.

[15] T. Hobfeld et al., “Challenges of QoE Management for Cloud Applica-
tions,” IEEE Commun. Mag., vol. 50, no. 4, Apr. 2012, pp. 28–36.

References
Yong Cui (cuiyong@tsinghua.edu.cn) received his B.E. and Ph.D. degrees in
computer science and engineering from Tsinghua University, China, in 1999
and 2004, respectively. He is currently a full professor at Tsinghua University
and Co-Chair of IETF IPv6 Transition WG Softwire. His major research interests
include mobile wireless Internet and computer network architecture. Having
published more than 100 papers in refereed journals and conferences, he
received the National Award for Technological Invention in 2013, and the
Influential Invention Award of the China Information Industry in both 2012 and
2004. Holding more than 40 patents, he has authored three Internet standard
documents, including RFC 7040 and RFC 5565, for his proposal on IPv6
transition technologies. He serves at the Editorial Board on both IEEE TPDS
and IEEE TCC.

Zeqi Lai (laizq13@mails.tsinghua.edu.cn) is now a Ph.D. student in the Depart-
ment of Computer Science and Technology, Tsinghua University. His supervisor
is Prof. Yong Cui. His research interests include cloud computing and cloud
storage.

ningwei Dai (lemondnw@gmail.com) is now a Master’s student in the Depart-
ment of Computer Science and Technology, Tsinghua University. Her super-
visor is Prof. Yong Cui. Her research interests include cloud computing and
cloud storage.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:38:09 UTC from IEEE Xplore. Restrictions apply.

