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Cloud storage services facilitate the sync of local fold-
ers with servers in the cloud. In recent years they 

have gained tremendous popularity and accounted for a large 
amount of Internet traffic [1, 2]. This high public interest push-
es various providers to enter the cloud storage market. Services 
like Dropbox, Google Drive, OneDrive, and Box are becoming 
pervasive in people’s routines. The first one, active since 2007, 
currently accounts for over 300 million users and has reached 
US$10 billion market capitalization [3]. Apart from a conve-
nient way to store, synchronize, and share personal files, cloud 
storage services also provide powerful application program-
ming interfaces (APIs) that enable third-party applications to 
offload the burden of data storage and management to the 
server. By aggregating users’ files or application data in the 
same place, cloud storage services are becoming the “data 
entrance” for personal users.

Meanwhile, the increasing number of wireless devices poses 
the demand of accessing, operating, and sharing user data 
from anywhere, on any device, at any time, and with any con-
nectivity. To this end, cloud storage services are extended and 
deployed on mobile devices. File changes made on local files 
can be automatically uploaded to the cloud through wireless 
communications, and then be transferred to other devices. 
However, synchronizing and sharing data via wireless networks 
are more challenging than that in wired networks. Wireless 
networks often suffer higher delay and packet loss. Connec-
tions may also be interrupted because of the mobility and 
varied channel quality. Therefore, ensuring good sync per-
formance while keeping data consistency is quite critical but 
challenging for mobile cloud storage services.

Previous works on cloud storage services have only focused 
on the server-side storage design [4] or the measurement in 
wired networks [1, 5–7]. Katsuya Suto et al. [8] introduced 
more general and effective principles for parallel data process-
ing. However, there is scant research on the design and archi-

tectural choice of mobile cloud storage services. It is important 
for both service providers and research communities to under-
stand the internal sync principle in order to provide optimiza-
tion. To fill this gap, in this article we present the first study to 
shed light on the architecture, protocol, and sync performance 
of mobile cloud storage services. We provide a technical over-
view including the introduction of the system architecture, 
sync protocols, and key capabilities that can be implemented 
to optimize sync efficiency, which indicates how fast changes 
can be completely synchronized between the local file system 
and the cloud.

Further on, we conduct an experimental study for the four 
most popular commercial mobile cloud storage services. As 
previous work [5] only measures the sync time and the sync 
traffic in wired networks, we take the benchmark one step 
further. Our measurement focuses on the mobile platform, 
and we further consider the impact of various network condi-
tions, the overhead of exception recovery that may be caused 
by intermittent connectivity, and the energy cost. Our results 
show that the concrete capability implementation has a strong 
impact on the sync performance, and some services cannot 
even work in high loss environments. In summary, all test-
ed services suffer from performance limitations, and there 
remains room for improvement. As optimizing service quality 
for mobile cloud storage is significant and challenging, we also 
highlight the key challenges and give hints for future improve-
ment. To the best of the authors’ knowledge, this is the first 
article that provides a wide overview and experimental evalua-
tion for mobile cloud storage services.

Mobile Cloud Storage: Architecture and 
Protocol
Architecture
Three major components can be identified in mobile cloud 
storage services: the client, the control server, and the data stor-
age server. Figure 1 depicts these three components and their 
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interaction in a typical wireless network. All components are 
integrated and exchange data through the sync protocol. The 
client exchanges control information (including metadata and 
account information) as well as content with control and data 
storage servers, respectively, over wireless communications. To 
speed up transmission, several capabilities can be implement-
ed in the sync protocol for optimization. Here we first describe 
the detailed functions of each component.

Client: Internally, the client consists of a variety of func-
tional modules. Before a sync, files are often spilt into several 
chunks in fixed or variable size [9] by the Chunker . Each 
chunk is treated as an independent object and identified by 
a hash. The Indexer  generates metadata, which include 
the hash value, version, and timestamp for each chunk. The 
Notifier connects to the control server and is used for polling 
changes performed elsewhere. Local file contents are stored 
in a Cache, and user modifications are first performed in the 
Cache. When connectivity is available, changes in the Cache 
are automatically updated to the cloud.

Control Server: The control server authenticates users, 
manages metadata, and notifies changes to clients. The file sys-
tem in the control server has a different abstraction, which is 
presented by a big metadata database. In this database, no file 
contents are stored, only metadata including chunk lists, which 
are the sets of hashes uniquely identifying file contents.

Data Storage Server: This component maintains a key-value 
store of hashes to encrypted chunks. Generally, all files are 
treated as binary objects, which are partitioned into chunks. 
These chunks are stored in the data storage server with no 
knowledge of users and files, and how they fit together. Such 
a chunking mechanism provides scalability for storage and 
can also be leveraged to improve transmission efficiency, as 
discussed later. Data storage servers can be distributed in dif-
ferent geographical locations, meaning that the chunks com-
bining a file may be stored in different storage nodes.

Sync Protocol
Typically, sync protocols are built on HTTP(S). We identify 
three main flows according to their function.

Notification Flow: The Notifier in the client continuously 
opens a persistent HTTP(S) connection to the control serv-
er, waiting for notification of changes performed elsewhere. 
Delayed responses are used to implement a push mechanism: 
notifications are pushed to the client once changes from other 
devices are updated to the cloud.

Control Information Flow: This flow is designed for the 
authentication and exchanging metadata between the client 
and the control server. Typically, a sync process starts with 
exchanging metadata with the control server, followed by 
a batch of either store or retrieve operations through stor-
age servers. When data chunks are successfully transferred 
through data storage flows, the client updates metadata with 
the control server again to conclude the transmission.

Data Storage Flow: During this process, file contents are 

transmitted between the client and the data storage server. 
Generally, files are split into several chunks and transferred 
sequentially in storage flows. In certain circumstances when 
updating multiple files, the client may open several concurrent 
connections for transmission, and in this way chunks would be 
distributedly stored in different storage servers.

A typical sync process contains three key steps:
• Sync preparation, updating metadata with the control server
• Data sync, in which the client stores data to or retrieves data 

from the data storage server
• Sync conclusion, in which the client sends metadata to the 

control server again to conclude transmission
Now we illustrate the protocol by introducing a typical sync 
scenario. Assume that user A in Fig. 1 is outside of the office 
carrying her mobile device and wants to synchronize with 
workmates B, C, and D in the office. Once files in the local 
Cache are changed, the client follows the typical three steps 
to upload changes to the cloud. Metadata are first updated 
to the control server (step 1), and then the mobile device of 
A uploads chunks to the storage server (step 2). After trans-
mission, the client communicates with the control server again 
to conclude the uploading process (step 3). Next, the con-
trol server will notify collaborators’ devices in a WLAN via 
the notification flow (step 4). Devices of B, C, and D down-
load chunks following the similar three processes to fetch and 
merge changes (step 5–7).

Capabilities for Performance Optimization
Wireless networks often suffer from limited bandwidth, higher 
packet loss, and intermittent connectivity, especially in poor 
signal strength environments. Moreover, mobile devices also 
have limited computation and storage resources. To improve 
sync efficiency and reduce traffic overhead in mobile networks, 
several key capabilities can be implemented in mobile cloud 
storage services.

Chunking: Chunking is the general and basic design con-
sideration for data storage. Chunking helps to reduce the sync 
overhead when resuming the transmission from an interrup-
tion, which usually happens in an unstable wireless environ-
ment. During the sync process, the client creates a session 
with the storage server, and sequentially sends chunks tagged 
with the offset and length. The next chunk will be sent until 
receiving an application layer acknowledgment for the previ-
ous chunk. By this approach, the sender avoids transferring 
the acknowledged chunks if the sync session is interrupted.

Bundling: When a batch of small files needs to be trans-
ferred, a natural way is to treat each small file as a single 
chunk and submit them continuously. However, frequent 
acknowledgment for small chunks will seriously harm sync effi-
ciency, especially in high delay networks. Moreover, too many 
HTTPS connections will also increase handshake overhead. 
It is beneficial to bundle small files in a single connection to 
reduce the application layer acknowledgment and the hand-
shake overhead.

Figure 1. Sync architecture of mobile cloud storage.
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Client-Side Deduplication: The basic idea of client-side 
deduplication is to identify the contents that already exist in 
the cloud before a sync to avoid redundant transmission, and 
reduce both the sync traffic and the completion time [10]. In 
practice, such a process can be conducted in the metadata 
information flow. The control server can identify redundant 
chunks by checking existing hashes in the database.

Delta Encoding: Ideally, the client only needs to update the 
modified data to the cloud. To this end, delta encoding cal-
culates file differences between two versions, allowing to only 
synchronize the delta content. Such technique provides signif-
icant benefit in bandwidth limited environments by reducing 
the sync traffic of frequent modifications. However for some 
encoded file types (e.g. jpeg or zip), delta-encoding should be 
carefully used since it will not provide benefit but only involve 
additional computation overhead.

Previous studies [1, 5] showed that cloud storage services 
can implement these capabilities in their desktop applications. 
In this article, we focus on cloud storage services in mobile 
platforms and check the capability implementation on mobile 
storage applications.

APIs for Connecting Everything in the Cloud
Modern mobile cloud storage services provide APIs that 
extend the access to the content management features in client 
software for use in third-party applications. In practical mobile 
operating systems (e.g., Android or iOS), these APIs take care 
of synchronizing data with cloud storage services through a 
familiar way like operations on the local file system. Behind 
the scenes, APIs synchronize local file changes to the cloud 
and automatically notify mobile applications when changes are 
made on other devices. Specifically, advanced functionalities 
like search, revision, or restoration of files can be implemented 
in APIs. The open APIs often implement the key capabilities 
like chunking or deduplication described above to optimize 
sync. The released client applications of mobile cloud storage 
services are also built on these content management APIs.

Experimental Evaluation
In this section we report the experimental results of evaluating 
the four most popular commercial mobile cloud storage ser-
vices: Dropbox, Google Drive, OneDrive, and Box. Our goal 
is two-fold: to check the capability implementation and bench-
mark the sync performance, including the protocol overhead, 
sync completion time, and energy cost.

Testbed Setup
We deploy a testbed consisting of a smartphone (Galaxy 
Nexus, with Android 4.3.1) connecting to a controlled WiFi 
access point (AP). We use tc, a Linux traffic control tool, at 
the AP to tune the round-trip time (RTT) and packet loss of 
the wireless environment. We use tcpdump to collect the pack-
et-level trace of a sync process, and extract the total sync time 
and traffic size. To measure the energy cost, we use Monsoon 
Power Monitor [11] to gain the power in each step of a 
sync process. Each test is performed 10 times to calculate the 
average result.

Checking the Capability Implementation
To check the capability in mobile cloud storage services, we 
design a specific test for each capability in the Android plat-
form to observe if the given one is implemented.

Chunking: We determine whether files are transferred as 
single objects or split into chunks, each delimited by a pause, 
by monitoring the throughput during the upload process of 
files differing in size. We find that only Box does not perform 
chunking when uploading files. Dropbox uses 4 MB chunks, 

and OneDrive uses 1 MB chunks, while Google Drive uses 
260 kB chunks. Since chunks are uploaded sequentially, using 
larger chunks reduces the acknowledgment overhead, but may 
involve more retransmission traffic when the sync process is 
interrupted. Chunking would be advantageous since it simpli-
fies upload recovery in case of failures, especially in slow or 
intermittent networks.

Bundling: We identify bundling by analyzing whether a 
batch of small chunks is bundled and cumulatively acknowl-
edged. Our results show that in the mobile platform, none 
of these services implement the bundling capability, with all 
chunks acknowledged sequentially.

Client-Side Deduplication: To check whether client-side 
data deduplication is implemented, we design two tests: 
uploading a file and its replica with a different name, and 
deleting a file in the server and uploading a copy of it. Our 
results show that only Dropbox implements data deduplica-
tion. All the other services will upload the same data even if 
it is available at the storage server. Interestingly, Dropbox can 
identify copies of files even after they are deleted.

Delta Encoding: By adding/deleting/updating a small 
amount of random data at the beginning, end, or random posi-
tion of a file, we examine whether delta encoding is imple-
mented. Our results show that in the mobile platform, none of 
the tested services implement delta encoding capability.

Sync Traffic Overhead
The traffic overhead is one of the most crucial design con-
siderations for mobile cloud storage services. If not designed 
properly, the amount of data sync traffic can potentially cause 
financial pains to both providers and users. Now we evaluate 
the sync traffic overhead of the four services when the client 
starts, is idle, and synchronizes changes, as well as when the 
sync process is interrupted.

Startup and Idle Overhead: We measure the sync traffic in 
20 min from startup without content updating to obtain the 
startup and idle overhead. Figure 2 reports the cumulative 
bytes exchanged. All four services have a burst when the client 
starts authentication and checking whether local files are up 
to date. Specifically, Dropbox has the largest startup traffic, 
which is 421.47 kB in 1.53 min. The background traffic keeps 
increasing because the clients continuously poll the server for 
new changes.

Sync Overhead: We then measure the total traffic size when 
uploading several benchmark sets differing in file number 
and size, as shown in Fig. 3. We find that in most cases the 
uploading traffic is close to the original file size. Specifically, 
we find that Google Drive has the largest uploading traffic, 
OneDrive and Dropbox come next, while Box has the smallest 
uploading traffic. This is because Google Drive implements 
the most aggressive chunking strategy (260 kB chunks) and 
hence involves much more acknowledgment overhead.

Figure 2. Background traffic in 20 minutes from startup.
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Furthermore, we measure the traffic overhead for updat-
ing local modifications to the server. Specifically, we use 
an editing tool to modify 10 bytes of a 5 MB word file, and 
then the client updates the modified content to the cloud. 
We observe that for all the services, the updating traffic is 
5 MB even though we only change 10 bytes of data. Note 
that the sync overhead of Dropbox is much higher than the 
measurement results in [12] conducted in a desktop envi-
ronment. The root cause is that in the mobile platform, all 
these services use the full-file sync mechanism instead of 
the incremental sync.

Overhead of Exception Recovery: Finally, we examine 
the total overhead when the sync process is interrupted. We 
upload a set of files with different sizes, and close the TCP 
connection when half of the file has been uploaded. After 
the restart of the program, the client will create new connec-
tions to finish the sync. The results of total traffic overhead 
are shown in Fig. 4. We find that Google Drive obtains the 
smallest total overhead. The aggressive chunking strategy 

used by Google Drive helps to reduce the overhead of excep-
tion recovery by avoiding the retransmission of chunks that 
are not received. Box generates the largest traffic because it 
retransmits the whole file when the connection is unexpect-
edly closed. The traffic of the four services when uploading 
10  1 MB files are similar and close to the total file size (10 
MB) because all services only send the unacknowledged files 
after the restart.

Sync Completion Time
Wireless or mobile environments often suffer from larger RTT 
and packet loss than wired networks. Now we evaluate the 
impact of various network conditions on the sync completion 
time. We measure the sync completion time as the duration 
from the first to the last packet with payload during the sync 
process, ignoring TCP tear-down delays.

The sync time results of uploading a set of files with 

Figure 3. Sync overhead of uploading several benchmark sets.
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different RTT using the four services are illustrated in 
Fig. 5. We only plot the results of 4 MB and 10   400 
kB files due to the page limit, and we consider 4 MB to 
be a reasonable size on mobile devices because of their 
limited storage. Data sets in different volumes have also 
been tested and show similar results. In each case, Box is 
the fastest because without chunking, it has the smallest 
acknowledgment overhead and transfers chunks in a single 
TCP connection. Google Drive spends more time than 
others because of using the aggressive chunking strategy 
and the usage of separated TCP/SSL connections per file. 
Furthermore, we find that the completion time of multi-
ple files is much longer than that of single files. This is 
because without bundling, a lot of small files involve more 
acknowledgment overhead. For all services, although it is 
common to see the sync be slower as the RTT rises, inter-
estingly we find that for multiple small files’ sync, the com-
pletion time increases faster. This is because many small 
files incur more acknowledgment overhead. Considering 
that the sequential acknowledgment scheme forces clients 
to wait one RTT between two chunks, the completion time 
is extended in slow networks because application-layer 
acknowledgments are transiting the network.

Results in various packet loss are similar and are omitted 
due to the page limit. Interestingly, we observe that when 
the packet loss reaches 10 percent, Google Drive can never 
synchronize data successfully! The client will get into a loop 
retransmitting the same chunk. We observe that Google Drive 
terminates the current connection and retransmits the chunks 
that are not received in high loss networks to ensure data 
consistency. Collectively, both the RTT and packet loss have 
strong impact on the sync completion time.

Energy Cost
We conduct experiments to evaluate the energy cost when 
synchronizing files differing in size. We break down the total 
energy consumption into the three sync steps described earlier, 
and the results are shown in Fig. 6. Box has the minimal ener-
gy cost in the Sync Preparation state because it does not split 
data into chunks before transmission. We observe that the 
energy cost of synchronizing a 100 kB file is similar to that of 
a 1 MB file. The reason is that because of the TCP slow start, 
the sync completion time of a 100 KB file is close to that of a 
1 MB file. Specifically, we observe the energy consumption of 
Google Drive when synchronizing a 10 MB file is the highest. 
The average CPU usage of the four services when upload-
ing 10MB files are 10.47 percent (Dropbox), 64.53 percent 
(Google Drive), 13.38 percent (OneDrive), and 13.80 percent 
(Box). Thus, the reason for such high energy cost may be that 
Google Drive uses small chunk size and continuously hashes 
the chunks during the entire sync process.

Challenges
According to our evaluation results of four mobile cloud ser-
vices, we find that the concrete capability implementation has a 
strong impact on the sync performance in various network envi-
ronments. Now we conclude and highlight three key challenges 
of future improvement for mobile cloud storage services.

The Conflict between Bandwidth Saving and 
Distributed Storage
Network bandwidth efficiency is the most significant but 
extremely challenging issue for sync in cellular networks. Ide-
ally, only the modified parts of the file need to be synchronized 
to the cloud. However, our measurement results indicate that 

Figure 6. Breaking down energy consumption for four services during the sync process: a) Dropbox; b) Google Drive; c) OneDrive; 
d) Box.
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most mobile cloud storage services only use the simple full-file 
sync mechanism, wasting a large amount of traffic when syn-
chronizing small changes. Implementing the incremental sync 
mechanism is very challenging in practice for two key reasons. 
On one hand, most of today’s cloud storage services (e.g., 
OneDrive and Dropbox) are built on top of RESTful infra-
structure, which only supports data access operations at the 
full-file (or full-chunk) level. On the other hand, the delta-en-
coding algorithm is the key technique for the incremental sync 
mechanism. However, most delta-encoding algorithms [13, 14] 
work at a file granularity, which means that the utility running 
on two ends must have access to the entire file. But for mobile 
cloud storage services, files are split into chunks and stored 
distributedly. Straightforward adaptation of delta-encoding 
requires piecing together all chunks and reconstructing the 
whole file, which would waste massive intra-cluster bandwidth. 
Since file modifications frequently happen, for future improve-
ment it is worthwhile to address the challenges by proposing 
an improved delta encoding algorithm to reduce sync traffic 
overhead.

The Trade-off between Real-Time Consistency and 
Protocol Overhead
Real-time consistency requires that data among multiple 
devices should be correctly synchronized as soon as possible 
[15]. To this end, some services like Dropbox open a persistent 
TCP connection for polling and receiving notifications. How-
ever, such a polling mechanism causes a large amount of traf-
fic and energy consumption since polling involves additional 
message exchanging, requesting the wireless network interface 
to be woken up and kept in a high power state. For mobile 
cloud storage services, the notification flow should be carefully 
designed to avoid too much traffic and energy waste.

The Balance between Sync Efficiency and 
Constrained Energy Resource in Mobile Devices
Sync efficiency, defined as how fast the local changes can be 
updated to the server, is an important metric for mobile cloud 
storage services. Generally, deduplication, delta-encoding, and 
compression are the key techniques for efficiency improve-
ment. However, all these techniques may involve additional 
computational overhead and energy cost, as shown above. The 
emergence of more energy-efficient sync techniques is expect-
ed to improve mobile cloud storage services.

Conclusion and Outlook
Since cloud storage is becoming a more predominant way to 
store, synchronize, and share user data in mobile networks, 
understanding the design and performance of cloud storage 
services is significant for both service providers and research 
communities. In this article, we present a thorough overview 
of the mobile cloud storage services by introducing their archi-
tecture, sync protocols, and key capabilities, followed by an 
experimental study that evaluates the four most popular com-
mercial services. Our experiment results show that the capabil-
ities have a strong impact on the performance of mobile cloud 
storage services. All tested services suffer performance limita-
tions, and there remains room for improvement.

Finally, we conclude and highlight three key challenges for 
future improvement of mobile cloud storage services. We hope 
our experiments and analysis can give insight for both service 
providers and research communities. To the best of our knowl-
edge we are the first to study the design and performance of 
mobile cloud storage services. As future work, we intend to do 
research on improving network level sync efficiency for mobile 
cloud storage services.
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